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Abstract

Multi-modal medical image segmentation plays a pivotal role in modern diagnostic and therapeutic procedures by
leveraging complementary anatomical and functional information from different imaging modalities, such as Magnetic
Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography (PET). Traditional
convolutional neural networks (CNNs), while effective for single-modality tasks, often struggle to capture complex
cross-modal dependencies and global contextual features essential for accurate segmentation in multi-modal scenarios.
In this paper, we propose a novel Vision Transformer (ViT)-based architecture specifically designed for multi-modal
medical image segmentation. Our approach integrates modality-specific encoders with a shared cross-modal attention
mechanism to effectively learn both intra- and inter-modality relationships. By harnessing the self-attention mechanism
inherent in transformers, our model captures long-range dependencies and global semantic context that are often missed
by conventional CNN-based methods. We conduct extensive experiments on publicly available multi-modal medical
imaging datasets, including BraTS (for brain tumor segmentation) and CHAOS (for abdominal organ segmentation), to
evaluate the performance of our method. Results demonstrate that our ViT-based framework significantly outperforms
state-of-the-art CNN models in terms of Dice coefficient, IoU, and boundary accuracy. Furthermore, ablation studies
confirm the contribution of each architectural component, particularly the cross-modal attention module, to overall
performance improvements. Our findings highlight the potential of transformer-based models as a unifying solution for
complex multi-modal medical image segmentation tasks, paving the way for more accurate and clinically applicable
automated diagnosis systems.
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1. Introduction

Medical image segmentation is a fundamental task in medical image analysis, enabling automated delineation of
anatomical structures, pathological regions, and functional abnormalities from various imaging modalities. Accurate
segmentation plays a critical role in clinical workflows such as diagnosis, treatment planning, surgical navigation, and
disease monitoring. In recent years, deep learning particularly convolutional neural networks (CNNs) has significantly
advanced the state of the art in medical image segmentation tasks.

However, in many clinical scenarios, a single imaging modality often fails to capture all the necessary information for
comprehensive diagnosis. For instance, Magnetic Resonance Imaging (MRI) offers excellent soft tissue contrast, while
Computed Tomography (CT) provides detailed bone and density information. Similarly, Positron Emission Tomography
(PET) captures metabolic activity but lacks fine anatomical detail. Therefore, multi-modal medical imaging, which
integrates information from different modalities, has emerged as a powerful approach to enhance segmentation
performance by leveraging complementary information.

Despite its promise, multi-modal medical image segmentation presents several challenges. Traditional CNN-based
models, while effective for single-modal analysis, are inherently limited in modeling long-range dependencies and often
struggle to effectively fuse heterogeneous information across multiple modalities. Feature extraction in CNNs is
constrained by local receptive fields, which can result in suboptimal integration of spatial and semantic information,
especially when modalities have different resolutions, noise characteristics, or anatomical distortions.

To address these limitations, Vision Transformers (ViTs) have recently gained attention in computer vision due to their
ability to model global context through self-attention mechanisms. Transformers are inherently well-suited for tasks
requiring long-range feature modeling, making them a promising alternative to CNNs for multimodal fusion. Early
applications of transformers in medical imaging have demonstrated encouraging results in segmentation, classification,
and registration tasks [1,2]. However, their potential for multi-modal medical image segmentation remains
underexplored.

In this study, we propose a novel multi-modal Vision Transformer-based framework for medical image segmentation.
Our architecture consists of modality-specific transformer encoders that extract rich representations from each modality
independently. These features are then fused using a cross-modal attention mechanism that enables dynamic interaction
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and contextual learning across modalities. By exploiting the global attention capabilities of transformers, our model
effectively captures both intra- and inter-modal relationships, resulting in more accurate and robust segmentation
outcomes.

We validate our approach on multiple publicly available datasets, including the BraTS dataset for brain tumor
segmentation (MRI modalities) and the CHAOS dataset for multi-organ segmentation (CT and MRI). Experimental
results demonstrate that our model outperforms existing state-of-the-art CNN-based and transformer-based
segmentation methods across various evaluation metrics. Additionally, we provide ablation studies to assess the impact
of our architectural components.

Our key contributions are as follows:

We propose a novel transformer-based framework for multi-modal medical image segmentation, combining modality-
specific encoders and a cross-modal attention fusion strategy.

We demonstrate the effectiveness of transformers in modeling long-range dependencies and integrating heterogeneous
information across imaging modalities.

We conduct extensive experiments and comparisons with state-of-the-art baselines, showcasing superior segmentation
performance on benchmark datasets.

2. Related Work

Medical image segmentation stands as a foundational component in modern computer-assisted clinical workflows,
encompassing critical applications such as disease detection, treatment planning, radiotherapy, surgical navigation, and
post-operative assessment. It involves the precise delineation of anatomical structures, pathological regions, and tissue
boundaries within medical imaging data. The accuracy and reliability of segmentation play a pivotal role in ensuring
effective and personalized patient care, influencing both diagnostic confidence and therapeutic outcomes.

Over the past decade, the field has witnessed a profound transformation driven by the emergence of deep learning
techniques, particularly convolutional neural networks (CNNs). These models have demonstrated exceptional
capabilities in learning hierarchical features directly from raw image data, eliminating the need for handcrafted features
and enabling end-to-end learning pipelines. Architectures such as encoder-decoder models, attention mechanisms, and
residual connections have significantly improved the performance of automated segmentation across a broad spectrum
of imaging modalities, including Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission
Tomography (PET), and Ultrasound.

Despite this impressive progress, a number of challenges remain unresolved especially in scenarios that require the
integration of multiple imaging modalities. Multimodal medical imaging is increasingly employed in clinical settings to
capture complementary information about a patient’s anatomy and pathology. For example, structural details from CT
can be combined with functional insights from PET or the soft tissue contrast from MRI. However, effectively fusing
these heterogeneous modalities introduces significant complexity due to differences in image resolution, intensity
distributions, noise levels, and anatomical alignment.

Furthermore, traditional CNN-based models, while powerful for single-modality segmentation, are fundamentally
constrained in their ability to capture global contextual relationships and long-range dependencies across spatial regions
and modalities. Their localized receptive fields limit the scope of contextual information that can be utilized for accurate
segmentation, often leading to suboptimal performance in complex clinical cases where cross-regional and cross-modal
correlations are essential. Additionally, naive fusion strategies such as early concatenation or channel-wise merging
often fail to model the intricate interdependencies between modalities, resulting in insufficient exploitation of the
available data.

In response to these limitations, the research community has begun to explore the use of Vision Transformers (ViTs) in
medical image analysis. Originally developed for natural language processing and later adapted for computer vision
tasks, ViTs leverage self-attention mechanisms to model relationships between all regions of an image, regardless of
spatial distance. This global attention capability makes transformers inherently more suitable for capturing long-range
dependencies and modeling complex, non-local interactions an advantage that is particularly valuable in multi-modal
medical image segmentation.

This section delves into the evolution of medical image segmentation techniques [3], with a focus on deep learning
advancements, the specific challenges of multi-modal data fusion, and the recent integration of transformer-based
architectures. By synthesizing these areas, it becomes clear that while notable progress has been made, there remains a
critical gap in effectively leveraging multi-modal information using transformer-based frameworks precisely the gap
that this research aims to address through the development of a novel Vision Transformer architecture for multi-modal
medical image segmentation.

2.1 Deep Learning for Medical Image Segmentation

Convolutional neural networks have long been the primary choice [1] for medical image segmentation tasks due to their
hierarchical feature extraction capabilities and spatial invariance. Architectures based on encoder-decoder frameworks
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have become especially popular. These models typically involve downsampling layers to extract semantic features
followed by upsampling paths that recover spatial resolution while combining semantic and structural information.

Despite their effectiveness, CNN-based models are fundamentally constrained by the locality of convolutional
operations. The receptive field, although expandable with deeper layers or larger kernels, remains limited in capturing
global contextual relationships. This limitation becomes critical in complex segmentation tasks where anatomical
structures span large areas or where precise boundary delineation depends on long range spatial cues. Moreover, the
spatial inductive biases of convolutions may not generalize well across highly variable patient anatomy or multi-
institutional imaging datasets.

2.2 The Challenge of Multi-Modal Medical Image Segmentation

Modern clinical decision-making often relies on multiple imaging modalities, each capturing unique and
complementary information. For example, magnetic resonance imaging (MRI) provides superior soft tissue contrast,
computed tomography (CT) offers high-resolution structural details, and positron emission tomography (PET) adds
functional metabolic data. Effective integration of such modalities can significantly enhance segmentation quality by
leveraging diverse yet complementary features.

However, multi-modal medical image segmentation introduces several complexities. First, the spatial alignment of
modalities is not always perfect, requiring the model to be robust to slight mismatches or registration errors. Second,
each modality may have different intensity scales, noise characteristics, and artifacts, which complicate direct feature
concatenation. Third, naïve fusion strategies such as early concatenation or simple summation often fail to model the
nuanced interdependencies between modalities, resulting in suboptimal or redundant feature representations.

To address these challenges, several architectural designs have been proposed that use separate modality-specific
encoders with later-stage fusion. While these designs improve the ability to extract modality-specific features, they
often rely on fixed or heuristic fusion operations that do not adapt to varying modality importance or task specific needs.
In many real-world applications, certain modalities may carry more diagnostic relevance for a particular pathology, yet
fixed fusion mechanisms treat all inputs uniformly.

Additionally, models designed for multi-modal tasks often assume the availability of all modalities during both training
and inference. In practice, however, some scans may be missing or corrupted due to clinical or logistical constraints.
This imposes an additional requirement for robustness and adaptability, which many existing architectures fail to satisfy.

2.3 Limitations of CNN-Based Fusion Methods

CNN-based multi-modal fusion models typically extract features using separate branches and merge them via
concatenation, addition, or attention mechanisms. While these strategies enhance feature diversity, they remain limited
in their capacity to model long range and cross-modal relationships.

Convolutional filters operate on local neighborhoods, making them ill-suited to capture interactions between spatially
distant regions or features originating from different imaging domains. Even with attention modules added to CNN
backbones, the models still often rely heavily on local inductive biases and struggle to scale when the number of
modalities increases. Moreover, CNNs require manual design of fusion points and mechanisms, which introduces
inflexibility and restricts the model’s adaptability to varying tasks.

Furthermore, CNNs are inherently parameter-heavy and prone to overfitting, especially when trained on limited medical
datasets. Their dependence on high-quality annotations and large sample sizes also poses a barrier in domains where
expert-annotated data is scarce or expensive to obtain.

Figure 1 illustrates the chronological evolution of medical image segmentation methods, beginning with traditional rule-
based techniques and progressing through CNN architectures to the latest Vision Transformer-based models. The figure
highlights how each paradigm shift brought improved accuracy and adaptability, culminating in our proposed ViT-Med,
which integrates multi-modal inputs through transformer driven fusion.

Figure 1. Evolution of Medical Image Segmentation Methods
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2.4 Emergence of Vision Transformers in Medical Imaging

Transformers, originally developed for natural language processing, have recently gained prominence in computer
vision due to their ability to model global dependencies through self-attention. Unlike convolutions, which focus on
local context, transformers compute attention weights across the entire image, enabling them to learn long-range
interactions and holistic representations.

Vision Transformers (ViTs) process images as sequences of patches, embedding each patch into a latent space and then
applying multi-head self-attention layers. This design allows ViTs to learn spatial relationships between distant regions,
which is particularly beneficial in medical segmentation tasks where global anatomical coherence is important. Early
successes of ViTs in natural image segmentation have led to increasing interest in adapting them to medical imaging.

In the context of medical image segmentation, ViT-based models have demonstrated competitive or superior
performance compared to traditional CNNs. By capturing both local texture and global shape cues, transformers provide
more balanced and context-aware segmentation. Moreover, their architectural flexibility allows easy integration with
modality-specific encoders, making them suitable for multi-modal applications.

Despite their potential, the application of vision transformers to multi-modal medical image segmentation remains
underexplored. Existing works have largely focused on single-modality tasks, often treating each image as a standalone
input. Few models have attempted to design transformer architectures capable of explicitly modeling both intra-modal
and inter-modal interactions.

2.5 The Need for Cross-Modal Attention in Transformers

In multi-modal settings, the key challenge lies in not only learning strong representations from each individual modality
but also in enabling dynamic communication between them. Transformers are particularly well-suited[4] to this task due
to their attention-based design, which can be extended to cross-modal attention mechanisms.

Cross-modal attention enables the model to learn how features from one modality should influence and enhance
features from another. This is especially important in medical imaging where, for example, functional abnormalities
may be visible in one modality while structural context comes from another. Unlike CNNs, which require manual
feature merging, transformers can learn to automatically align and weight cross-modal features based on task relevance.

However, designing an effective cross-modal attention module requires careful architectural consideration. It must
maintain modality-specific information while also enabling shared learning. It must be computationally efficient,
scalable to different input dimensions, and robust to missing or noisy modalities. These design challenges remain
largely unresolved in current literature, leaving a significant opportunity for innovation.

2.6 Positioning of This Work

Given the limitations of current multi-modal segmentation approaches and the underutilization of transformers in this
space, there exists a clear research gap. Most existing models either rely on inflexible CNN-based fusion strategies or
treat modalities in isolation. There is a pressing need for a unified framework that can:

Extract and preserve modality-specific representations.

Enable rich interaction between modalities via cross-modal attention.

Leverage global contextual understanding through self-attention mechanisms.

Generalize well across multiple segmentation tasks and imaging modalities.

The approach proposed in this paper is designed to fill this gap by introducing a multi-modal transformer-based
architecture that incorporates modality-specific ViT encoders and a cross-modal fusion module tailored for medical
image segmentation. By leveraging the strengths of transformers in capturing global context and the complementary
nature of multi-modal medical imaging, our method aims to deliver more accurate, robust, and generalizable
segmentation results.

3. Methodology

3.1 Overview

The proposed research introduces an advanced, end-to-end multi-modal vision transformer-based architecture
specifically tailored for high-precision medical image segmentation. Medical imaging data often involves multiple
modalities such as MRI, CT, PET, or Ultrasound each offering unique anatomical or functional insights. However,
effectively integrating these diverse modalities into a unified, intelligent segmentation framework remains a major
research challenge. To address this, our method is strategically designed to preserve modality-specific information,
extract global semantic context, and model complex cross-modal relationships, all within a unified transformer-based
structure.

At its core, the proposed architecture builds upon the strengths of Vision Transformers (ViTs), which have shown
remarkable capability in capturing long-range dependencies and non-local interactions across image regions an inherent
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limitation in convolutional neural networks (CNNs) due to their localized receptive fields. To adapt transformers
effectively for the task of multi-modal medical image segmentation [5], we employ a parallel encoding strategy that
independently processes each imaging modality through dedicated transformer-based encoders. This ensures that the
distinct statistical characteristics and semantic features of each modality are retained and accurately modeled,
preventing premature information mixing that can degrade performance.

The outputs from these modality-specific [6] patch embedding encoders are then passed into a cross-modal transformer
fusion module, which serves as the architectural centerpiece. This module leverages both self-attention and cross-
attention mechanisms to enable each modality to not only refine its own representation but also learn rich, context-
aware interactions with other modalities. Such dynamic fusion allows the model to adaptively weigh and integrate
information across modalities based on regional relevance significantly improving its ability to identify structures that
may be visible in only one or a subset of the inputs.

Following this, the architecture incorporates a hierarchical multi-scale feature aggregation framework to recover fine-
grained spatial details lost during encoding. This decoder pathway integrates low- and high-resolution features from
multiple depths of the transformer, mimicking the strengths of U-Net-style architectures while preserving the
advantages of global attention from the transformer backbone. This hierarchical structure enhances the model’s
sensitivity to both subtle boundaries and large contextual regions, which is critical in medical segmentation tasks that
demand both precision and consistency.

Finally, the fused and aggregated features are directed to a segmentation head, which translates the rich feature
representations into dense, pixel-wise (or voxel-wise) predictions. This module supports both binary and multi-class
segmentation tasks and can be adapted for 2D or 3D volumes depending on the application. The design is modular and
highly flexible, allowing for future extensions such as uncertainty estimation, modality dropout for missing inputs, or
self-supervised pretraining. The overall structure of the proposed ViT-Med framework is illustrated in Figure 2. It
consists of modality-specific patch embedding encoders, a cross-modal transformer fusion module, hierarchical feature
aggregation, and a dedicated segmentation head. This architecture enables efficient global-local feature learning from
multiple imaging modalities.

Figure 2. Proposed ViT-Med architecture with modality-specific encoders, cross-modal fusion, and hierarchical decoding

3.2 Modality-Specific Patch Embedding Encoders

The initial stage of the proposed multi-modal segmentation framework employs parallel modality-specific patch
embedding encoders, a critical design choice aimed at maximizing the extraction of meaningful and discriminative
features from each imaging modality. Medical imaging datasets often comprise multiple modalities such as Magnetic
Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), or Ultrasound, each of
which captures unique physiological or anatomical information with distinct intensity distributions, contrasts, and noise
characteristics. Directly combining or concatenating these heterogeneous inputs at the raw image level may introduce
unwanted noise or semantic ambiguity, potentially degrading segmentation performance. To overcome this, our
architecture deliberately processes each modality independently during the early encoding phases, ensuring that the
intrinsic semantic content and structural patterns of each modality are preserved and accurately represented.

Concretely, each modality-specific encoder employs a patch embedding mechanism [7] inspired by the original Vision
Transformer (ViT) paradigm. The input medical image, which can be either 2D slices or full 3D volumes depending on
the application, is partitioned into a set of non-overlapping patches. For 2D images, these patches are rectangular
segments, while for volumetric data, cubic patches are extracted. Each patch is then flattened into a one-dimensional
vector, effectively transforming the spatial domain into a sequence suitable for transformer processing. These vectors
are subsequently projected via a learned linear transformation into a fixed-dimensional embedding space, creating a
compact yet expressive representation of localized image regions.
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An essential component to retain spatial awareness [8] is the addition of learnable positional encodings to these patch
embeddings. Unlike convolutional neural networks that inherently capture spatial relationships through localized
kernels, transformers require explicit positional information since their attention mechanisms treat input tokens as an
unordered set. The positional encodings encode the relative or absolute position of each patch within the original image
volume, enabling the model to reason about spatial structure and anatomical location effectively.

Following the embedding and positional encoding steps, the tokenized input sequence is fed into a series of Transformer
Encoder Blocks, each consisting of multi-head self-attention layers and feed-forward neural networks with
normalization and residual connections. This architecture allows the encoder to capture both local and global
dependencies within the modality, modeling complex structural patterns such as tissue textures, lesion boundaries, or
organ shapes, which are critical for accurate segmentation.

This independent encoding strategy has several advantages. First, it prevents early-stage feature contamination or
interference across modalities, which can occur if raw inputs are fused prematurely. This is particularly important given
the diverse signal characteristics and noise profiles inherent to different imaging techniques. Second, it enables
modality-specific pretraining or fine-tuning, allowing each encoder to learn tailored feature representations from large-
scale modality-specific datasets before integration. This enhances the overall robustness and adaptability of the
framework to different clinical settings. Lastly, by keeping the modality representations separate initially, the
architecture preserves interpretability, enabling clinicians and researchers to analyze the contribution of each modality
in isolation before fusion.

3.3 Cross-Modal Transformer Fusion Module

Once modality-specific features are extracted, the Cross-Modal Transformer Fusion Module serves as the central
innovation of the framework. This module is designed to jointly model interactions across modalities, enabling the
network to dynamically learn which modality provides the most relevant information for each region of the image.

The fusion module operates on the output tokens of all modality encoders [9]. It consists of multi-head self-attention
layers followed by cross-attention layers. The self-attention layers enable each modality to refine its own representation
further, while the cross-attention layers enable inter-modality communication by allowing features from one modality to
attend to features from others. Let’s define the process:

Given M modalities, each modality provides an embedded sequence of tokens {X1,X2,...,XM}

Each token is passed through self-attention within its own branch.

The results are then processed by a cross-attention mechanism, where the query comes from one modality, and the key-
value pairs come from another.

This is repeated for all modality pairs, forming a cross-modal graph of interactions.

These refined and fused representations are then concatenated or summed and passed to the next stage. The design
ensures that each token’s output is informed not just by its own modality, but also by aligned signals from all other
available modalities.

3.4 Hierarchical Multi-Scale Feature Aggregation

A critical component of the proposed architecture is the Hierarchical Multi-Scale Feature Aggregation module, which is
specifically designed to enhance both the semantic depth and spatial accuracy of the segmentation output. In complex
medical imaging scenarios, such as tumor delineation or organ segmentation, precise boundary localization and
semantic understanding are equally important. Low-level features tend to preserve fine-grained spatial details like edges
and contours, while high-level features capture abstract semantic information about anatomical structures. A successful
segmentation model must effectively integrate features at multiple scales to achieve robust and accurate predictions.

To address this need, our architecture adopts [10] a hierarchical decoder structure that mirrors the well-established
principles of U-Net but is carefully adapted to work with transformer-based feature maps. Traditional CNN-based
decoders often rely on convolutions and skip connections alone, but in our framework, we introduce transformer aware
decoding blocks that aggregate features through a combination of upsampling, linear projection, attention-guided
interpolation, and token fusion mechanisms. These components collectively restore spatial resolution while maintaining
semantic coherence across different scales.

The hierarchical decoder operates by progressively upsampling the fused feature tokens generated by the transformer
encoders and the cross-modal fusion module. At each decoding stage, features are interpolated and aligned to the spatial
resolution of the corresponding encoder layer. Skip connections are then used to directly link encoder outputs with their
decoder counterparts, ensuring the preservation of critical low-level anatomical information that may otherwise be lost
during deep encoding. This not only strengthens gradient flow during training but also stabilizes the learning of fine
spatial features such as tumor boundaries, vessel structures, or small lesions.

Moreover, the decoder performs multi-resolution fusion by concatenating or adding features from different transformer
layers, followed by lightweight transformer blocks or convolutional refinements. This design ensures that both coarse-
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grained and fine-grained features contribute meaningfully to the final prediction. For instance, deeper transformer layers,
which have broader receptive fields and capture global contextual dependencies, are complemented by shallow layers
that retain high spatial fidelity. This synergistic combination allows the model to make more confident decisions,
particularly in ambiguous regions where contextual awareness and boundary precision must co-exist.

In addition, the hierarchical aggregation strategy enhances the model’s ability to generalize across varied anatomical
structures and imaging conditions. Since medical images often suffer from challenges like low contrast, variable
intensity distributions, and inter-patient variability, the ability to reason over multiple spatial scales becomes essential
for robustness. Our multi-scale framework inherently mitigates these issues by providing redundant yet complementary
pathways for feature interpretation, making the segmentation more stable across different imaging modalities and
clinical conditions.

3.5 Segmentation Head

The final and crucial stage of the proposed architecture is the Segmentation Head, which is responsible for transforming
the high-dimensional, fused feature representations into precise, dense pixel-wise (or voxel-wise) segmentation maps.
This component plays a vital role in bridging the gap between learned abstract feature embeddings and the final clinical
decision-making output, making it central to the practical deployment of the model in real-world medical imaging
applications.

Once the hierarchical decoder aggregates multi-scale features across different resolution levels, the output is passed into
the segmentation head a carefully constructed module comprising a series of projection layers, which may include
convolutional filters, linear mappings, or lightweight transformer layers, depending on the application requirements and
computational constraints. These layers progressively reduce the feature dimensions and refine the spatial resolution of
the prediction map to align it with the original image size. This process ensures that each pixel (or voxel) in the input
image is assigned a class probability based on its rich multi-modal, multi-scale, and context-aware feature
representation.

At the final layer, a softmax activation function is applied for multi-class segmentation tasks, where each pixel is
classified into one of several anatomical classes (e.g., white matter, gray matter, tumor, organ type), while a sigmoid
activation is used for binary segmentation (e.g., tumor vs. background) or multi-label scenarios, where pixels may
simultaneously belong to more than one class (e.g., overlapping tissues or pathologies). The use of activation functions
transforms the feature vectors into interpretable class probability scores, facilitating easy thresholding and post-
processing for clinical use.

The segmentation head is designed [11] to be adaptable to both 2D and 3D segmentation tasks, making it suitable for a
wide range of imaging modalities, including 2D slice-wise MRI scans or full volumetric CT datasets. For 3D
applications, the head is extended to operate on volumetric patches, ensuring spatial coherence across slices and
enhancing performance on contiguous structures such as organs or lesions. Additionally, the architecture supports
auxiliary supervision at intermediate decoding stages. By introducing auxiliary loss functions at earlier levels, the model
receives deep supervision, which encourages stronger gradient flow and faster convergence during training, especially
in deeper networks.

One of the key strengths of this segmentation head is its flexibility and extensibility. It can be fine-tuned for different
segmentation objectives binary, multi-class, or multilabel by simply adjusting the number of output channels and the
loss function used during training (e.g., Dice Loss, Cross-Entropy, Focal Loss). Moreover, the segmentation head is
compatible with post-processing modules such as Conditional Random Fields (CRFs), morphological filters, or
connected component analysis, allowing the final predictions to be further refined for clinical reliability.

In essence, the segmentation head serves as the final decision-making unit of the architecture. It consolidates all the
contextual, spatial, and modality-aware features learned throughout the network into a unified prediction map. By
combining technical flexibility with clinical precision, this component ensures that the model can be readily applied
across diverse medical imaging tasks, providing robust, interpretable, and highly accurate segmentation results that
meet the standards of both academic research and practical healthcare deployment.

3.6 Model Advantages and Key Innovations

The proposed transformer-based multi-modal segmentation framework offers several critical improvements over
existing methods:

Dynamic Cross-Modal Fusion: Unlike fixed or static fusion schemes, our model adaptively learns the relevance and
complementarity of different modalities at each spatial location.

Global Context Awareness: Vision transformers inherently model long-range dependencies, capturing complex spatial
and structural relationships often missed by CNNs.

Modality-Specific Learning: Separate patch embedding encoders preserve the integrity of individual modalities,
allowing fine-grained representation without early interference.
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Scalability and Flexibility: The architecture is modular and can be scaled to handle 2D or 3D data, different numbers of
modalities, and various segmentation tasks.

Improved Interpretability: Attention maps can be visualized to understand which modality contributes most to the
prediction, increasing clinical transparency and trust.

3.7 Optional Extensions and Robustness

To further improve generalization and robustness, the architecture can be extended with:

• Uncertainty Estimation: Using Monte Carlo dropout or probabilistic transformers.

• Missing Modality Handling: Training with modality dropout so the model learns to infer from incomplete inputs.

• Self-Supervised Pretraining: Pretrain modality encoders using reconstruction or contrastive learning to improve
performance with limited labeled data.

4. Experimental Setup

To rigorously assess the efficacy, scalability, and clinical readiness of the proposed multi-modal Vision Transformer
(ViT)-based architecture, we designed a comprehensive experimental framework rooted in methodological consistency,
empirical reproducibility, and comparative fairness. The experimental setup serves as the backbone for evaluating the
proposed model’s performance under diverse imaging conditions and across varied anatomical targets. This section
systematically details the datasets utilized, the data preprocessing techniques employed to ensure uniformity across
modalities, the implementation specifics of the model, the training configurations tuned for optimal convergence, and
the quantitative metrics adopted for multi-dimensional performance evaluation.

Our overarching goal is to not only verify the theoretical and algorithmic soundness of our model but also to
demonstrate its practical viability in realistic medical imaging pipelines. Therefore, each component of the experimental
process from data loading to final evaluation has been designed to reflect a balance between rigorous scientific control
and real-world clinical variability. To eliminate biases introduced by inconsistent input representations [12], we employ
modality-aware normalization, spatial alignment, and patch-wise sampling strategies that harmonize input
characteristics across patients and scanners. One such example is the intensity normalization formula, applied voxel-
wise across each modality channel:

norm
( , , )

( , , ) I

I

I x y z
I x y z







(1)

where I(x,y,z) is the raw voxel intensity at spatial location (x,y,z), and µ and σ are the mean and standard deviation of
the non-zero intensities within the image volume. This standard Z-score normalization ensures that each input channel
is zero-centered and has unit variance, which is critical for stable gradient propagation in deep transformer-based
networks.

In addition, all experiments are conducted under controlled and repeatable configurations to ensure statistical reliability
and cross-methodological comparability. We maintain consistent random seeds across all training runs, adopt cross-
validation where appropriate, and utilize standardized training schedules, loss functions, and data augmentation
pipelines. Each dataset is partitioned into training, validation, and testing subsets using stratified sampling to preserve
class distributions. To avoid overfitting and to enhance generalization, we incorporate on-the-fly augmentation
techniques that mimic clinical variability, such as random spatial deformations, contrast perturbations, and Gaussian
noise injections.

This section thus serves as both a technical roadmap and a scientific foundation for the results presented later in this
paper. By outlining our evaluation procedures with a high degree of transparency and methodological precision, we
ensure that the performance outcomes of our proposed model are not only statistically robust but also clinically credible
and reproducible across deployment scenarios.

4.1 Datasets

We selected two widely used multi-modal medical imaging datasets that offer both anatomical and pathological
segmentation challenges. These datasets provide heterogeneous imaging modalities and rich ground truth annotations,
making them ideal for evaluating complex segmentation models.

Table 1. Overview of datasets used for multi-modal segmentation experiments

Dataset Modalities Region Samples Annotations

BraTS T1, T1ce, T2, FLAIR Brain Tumor 369 ET, TC, WT

CHAOS T1-DIXON, CT Abdomen 80 Liver, Spleen, Kidneys
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Table 1 summarizes the key characteristics of the BraTS and CHAOS datasets, including the imaging modalities used,
anatomical focus, number of subjects, and annotation types. These datasets represent both pathological and healthy
segmentation challenges, supporting robust evaluation of the proposed model.

4.1.1 BraTS-Brain Tumor Segmentation Dataset

The BraTS dataset contains multi-parametric MRI scans from patients diagnosed with gliomas, a class of primary brain
tumors with highly heterogeneous tissue composition. Each patient volume includes four aligned MRI sequences:

• T1-weighted (T1)

• T1-weighted contrast-enhanced (T1ce)

• T2-weighted (T2)

• Fluid-attenuated inversion recovery (FLAIR)

Each modality provides unique tissue contrast characteristics: T1ce emphasizes enhancing tumor regions, FLAIR
highlights fluid and edema, and T2 captures diffuse signal intensity variations. The dataset includes voxel-wise manual
annotations for three tumor subregions:

• ET (Enhancing Tumor)

• TC (Tumor Core)

• WT (Whole Tumor)

The multi-modal nature of BraTS allows[13] for evaluating how well a segmentation model can leverage modality
complementarity to segment tumors with indistinct or non-overlapping boundaries across modalities.

4.1.2 CHAOS-Combined Healthy Abdominal Organ Segmentation

The CHAOS dataset includes abdominal MR and CT scans with voxel-wise annotations for the liver, kidneys, and
spleen. Its dual-modality structure introduces a realistic clinical scenario where CT and MRI offer differing organ
contrast, spatial resolution, and noise profiles. Unlike tumor segmentation tasks [14], this dataset focuses on anatomical
boundary clarity, making it ideal for testing the generalization capability of cross-modality segmentation systems.

4.2 Data Preprocessing

Preprocessing is critical for harmonizing data across modalities and ensuring numerical stability in transformer-based
models. We implement a robust, modality-aware preprocessing pipeline that includes the following steps:

Intensity Normalization:

To reduce scanner- and patient-specific variations [6], each modality is normalized independently using Z-score
normalization:

norm
( , , )

( , , ) I

I

I x y z
I x y z





 (2)

where I(x,y,z) is the raw voxel intensity, and µI and σI are the mean and standard deviation of non-zero voxels in the
volume. This standardization ensures that the inputs across modalities are zero-centered and scale-invariant, a necessary
condition for transformer stability during training.

Resampling and Registration:

All volumes are resampled to a uniform isotropic voxel spacing (e.g., 1×1×1 mm3) using third-order spline
interpolation to eliminate inter-patient resolution inconsistencies. Rigid or affine registration is applied to align
modalities spatially, ensuring that corresponding anatomical structures are co-located across modalities.

Cropping and Padding:

Volumes are automatically cropped around the Region of Interest (ROI) based on ground truth bounding boxes and then
padded to a fixed shape (e.g., 160×160×160 voxels) to standardize input dimensions and maintain batch compatibility.

Patch Extraction:

To address memory constraints on 3D inputs, we divide full volumes into overlapping patches of size 1283 or 963,
depending on GPU capacity. These are sampled uniformly across the volume using stride s = 64 to ensure coverage
while maintaining training diversity.

Data Augmentation:

To increase robustness and mitigate overfitting, on-the-fly augmentation is applied uniformly across modalities:
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• Spatial augmentations: random flipping, rotations (θ∈ [−30◦,30◦]), elastic deformations

• Intensity augmentations: gamma correction, brightness shifts, contrast scaling, additive Gaussian noise (N(0,σ2))

• Geometric transformations: scaling (s∈ [0.9,1.1]), shearing

All transformations are applied identically across modalities for a given subject to preserve spatial alignment.

To visually complement the description of our experimental procedure, Figure 3 presents the complete pipeline of the
proposed system. It outlines the end-to-end workflow beginning with multi-modal medical image inputs, followed by
preprocessing steps such as normalization, registration, and patch extraction. These processed inputs are fed into the
ViT-Med model for training using a composite loss function. Finally, the segmentation performance is evaluated using
clinically relevant metrics including Dice coefficient, IoU, and HD95. This visual flow provides a concise overview of
how data is transformed and analyzed throughout the segmentation process.

Figure 3. Experimental setup pipeline illustrating data flow from input modalities to evaluation metrics

4.3 Implementation Details

The proposed architecture was implemented [15,12] using the PyTorch deep learning framework, which offered the
flexibility to design custom modules for transformer attention blocks, patch embedding layers, and cross-modal fusion
strategies. The model was trained using mixed-precision (FP16) training to reduce GPU memory consumption and
accelerate computation without compromising numerical stability. All experiments were conducted on high-
performance NVIDIA RTX 3090 and A100 GPUs, enabling efficient handling of both 2D and 3D medical image data at
scale.

The model configuration was designed to be adaptable across datasets. For 2D segmentation tasks, the input size was
set to 256×256 pixels, whereas for 3D volumetric data, the input shape was standardized to 128×128×128 voxels. Each
image or volume was divided into non-overlapping patches, which were linearly projected into token embeddings of
dimension 768. The transformer architecture consisted of 6 to 12 layers, depending on dataset complexity, each
employing 12 attention heads to facilitate multi-scale, long-range dependency modeling. Importantly, the network
utilized one modality-specific transformer encoder per input modality, allowing it to preserve and specialize in the
unique characteristics of each imaging stream. For example, in the BraTS dataset, four separate encoders were deployed
to process T1, T1ce, T2, and FLAIR images independently before fusion.

For training, we adopted the AdamW optimizer, which decouples weight decay from the gradient update step, with a
weight decay coefficient set to 0.01. The initial learning rate was fixed at 1×10−4 and scheduled using a cosine
annealing strategy after a 10-epoch linear warm-up, allowing for stable convergence during early training while
facilitating fine-tuned learning in later stages. The batch size was dynamically selected based on memory availability:
ranging from 2-4 for 3D inputs and 8-16 for 2D inputs. Each model was trained for 250 to 300 epochs, with early
stopping applied based on validation performance, specifically monitoring the Dice Similarity Coefficient (DSC) to
prevent overfitting and ensure optimal checkpoint selection.

To enhance generalization and model robustness, a combination of regularization strategies was used, including dropout
layers with a probability of 0.1, gradient clipping to prevent exploding gradients in deep transformer layers, and
comprehensive data augmentation during training. These augmentations, described earlier in Section 4.2, played a
critical role in simulating realistic variability in clinical data.

The loss function employed was a hybrid objective, carefully designed to balance class imbalance and segmentation
accuracy at both region and boundary levels. The total loss Ltotal is defined as:

total 1 Dice 2 CE 3 FocalL L L L        (3)
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where:

• LDicepromotes region-level overlap between predictions and ground truth,

• LCE (Cross-Entropy Loss) ensures voxel-wise classification fidelity, and

• LFocal (or alternatively, Tversky Loss) is optionally applied to emphasize learning from rare or small anatomical
structures.

The values for λ1,λ2,λ3 were empirically tuned during development to achieve optimal performance across all metrics.
During training, model checkpoints were saved after each epoch, and the best-performing model was automatically
selected based on the highest validation Dice score and lowest Hausdorff Distance (HD95), ensuring that the most
spatially accurate and clinically relevant segmentation was preserved for final evaluation.

Table 2. Training settings and hyperparameters for ViT-Med

Parameter Value

Input Size 128×128×128 (3D)

Patch Size 16×16×16
Optimizer AdamW

Learning Rate 1e-4

Epochs 300
Batch Size 4 (3D) / 16 (2D)

Loss Function Dice + Cross Entropy

Scheduler Cosine Annealing

This table lists the model configuration and training strategy used across all experiments. The same setup was
applied for BraTS and CHAOS to ensure fair comparison across datasets.

4.4 Evaluation Metrics

We used a comprehensive set of evaluation metrics to assess volumetric overlap, boundary precision, and segmentation
reliability:

Dice Similarity Coefficient (DSC):

2 P G
DSC

P G





(4)

where P is the predicted mask and G is the ground truth.

Jaccard Index (IoU):Measures intersection over union.

IoU
P G
P G





(5)

Hausdorff Distance (HD95): Measures boundary error between predicted and true contours at the 95th percentile
to mitigate outlier impact. Precision and Recall:

TP TPPrecision= ,Recall=
TP+FP TP+FN

(6)

Volumetric Similarity (VS):

pred true

pred true

VS 1
V V
V V


 


(7)

All metrics are reported as mean ± standard deviation over the test set or cross-validation folds, ensuring statistical
robustness.

4.5 Comparison Baselines

To rigorously evaluate the effectiveness and relative performance of our proposed multimodal Vision Transformer-
based segmentation architecture, we conducted comprehensive head-to-head comparisons against a selection of state-of-
the-art baseline models. These baselines were chosen to represent a diverse range of architectural paradigms, including
traditional convolutional neural networks (CNNs), hybrid transformer-CNN frameworks, and specialized multi-modal
fusion models.
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We first included the U-Net and U-Net++ architectures, which are widely recognized for their encoder-decoder
symmetry and use of skip connections to preserve spatial resolution during upsampling. These models serve as classical
baselines in medical image segmentation and provide a strong foundation for understanding performance differences.
Next, we evaluated our method against nnU-Net, a self-configuring and adaptive segmentation framework that has
demonstrated top-tier performance across numerous medical imaging benchmarks. nnU-Net automatically adjusts its
architecture, training schedule, and post-processing pipeline based on the dataset characteristics, making it an ideal
comparator for evaluating generalization capability.

In the category of transformer-integrated models, we considered TransUNet, a hybrid approach that combines CNN-
based encoders with transformer decoders to capture both local spatial features and global contextual relationships.
Additionally, we included Swin-UNet, a fully transformer-based model utilizing a Swin Transformer backbone with
shifted windows, enabling hierarchical representation learning and efficient computation for high-resolution images.

To specifically assess multi-modal integration, we also benchmarked against HeMIS and MedFuseNet, two
architectures designed to handle heterogeneous modality inputs. HeMIS employs an early fusion strategy with
modality-specific feature encoders, while MedFuseNet uses a more structured late fusion mechanism to integrate
learned representations from multiple modalities. Both models are optimized to handle missing modality scenarios and
provide valuable insights into the effectiveness of our cross-modal attention fusion mechanism.

Importantly, each baseline model was retrained from scratch using our standardized preprocessing pipeline, data
augmentation strategy, and evaluation metrics to ensure a controlled and fair comparison. This consistency guarantees
that any observed performance differences are attributable to architectural innovations rather than variations in training
conditions, data handling, or hyperparameter tuning.

5. Results and Analysis

This section presents an extensive and multifaceted evaluation of the proposed multimodal Vision Transformer (ViT)-
based segmentation framework, aimed at validating its effectiveness across diverse anatomical regions, imaging
modalities, and clinical use cases. The evaluation is structured to highlight the model’s capabilities not only in terms of
raw segmentation performance, but also in terms of generalization, robustness, and clinical applicability. Our
framework is benchmarked against a curated set of stateof-the-art models, including both traditional convolutional
neural networks (CNNs) and modern transformer-based architectures, to ensure a thorough and fair comparative
analysis.

We assess the model using both quantitative metrics and qualitative visual assessments on two high-impact and widely
accepted medical image segmentation datasets: BraTS, which presents a complex and heterogeneous brain tumor
segmentation challenge using multi-modal MRI, and CHAOS, which targets multi-organ segmentation in abdominal CT
and MR scans under varying image contrasts and anatomical ambiguities. Through these datasets, we evaluate our
model’s ability to accurately delineate pathological as well as structural boundaries across different imaging scenarios.

Quantitative results are reported using a comprehensive suite of evaluation metrics, including Dice Similarity
Coefficient (DSC), Jaccard Index (IoU), Hausdorff Distance (HD95), Precision, Recall, and Volumetric Similarity.
These metrics collectively capture region overlap accuracy, boundary alignment, and detection sensitivity providing a
robust, multi-angle perspective on model performance. All metrics are presented as mean ± standard deviation, allowing
us to assess not just the average effectiveness, but also the statistical consistency and reliability of the predictions across
multiple test cases.

In addition to quantitative metrics, we perform qualitative analysis by visually inspecting segmentation outputs and
comparing them to ground truth annotations and baseline predictions. These visual evaluations help us interpret how
well the model understands anatomical structures, maintains spatial continuity, and handles noisy or low-contrast
regions characteristics that are especially important in high-stakes clinical environments.

Further, we explore the architectural rationale behind our performance improvements through analytical interpretation,
detailing how specific design decisions such as the use of modality-specific encoders, cross-modal attention
mechanisms, and hierarchical multi-scale decoding collectively contribute to the observed accuracy and generalization
power. We also extend our evaluation with stress tests for generalization, including cross-modality testing, missing
modality scenarios, and synthetic noise perturbations, to ensure the model’s robustness under real-world constraints.

Overall, this section demonstrates that our proposed framework achieves not only state-of-the-art accuracy but also
delivers high clinical relevance, operational robustness, and architectural elegance, thereby reinforcing its potential for
real-world deployment in automated diagnostic systems, surgical planning platforms, and longitudinal patient
monitoring tools.

5.1 Quantitative Evaluation

We report the performance of our model on two widely-used datasets: BraTS (for brain tumor segmentation) and
CHAOS (for abdominal organ segmentation). The evaluation metrics used include Dice Similarity Coefficient (DSC),
Jaccard Index (IoU), Hausdorff Distance (HD95), Precision, and Recall. Results are averaged over the test set and
include standard deviation to reflect robustness and consistency.
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5.1.1 BraTS Dataset (Brain Tumor Segmentation)

Method
Dice Score

IoU HD95
(mm) Precision Recall

WT TC ET

U-Net 0.85±0.03 0.81±0.05 0.78±0.06 0.75 5.1±1.2 0.83 0.80

TransUNet 0.88±0.02 0.85±0.04 0.82±0.05 0.78 4.2±0.9 0.85 0.84

Swin-
UNet 0.89±0.02 0.86±0.03 0.84±0.04 0.80 3.8±0.8 0.86 0.85

ViT-Med
(Ours) 0.91±0.01 0.89±0.02 0.87±0.03 0.83 3.1±0.6 0.89 0.88

Our method demonstrates superior performance across all tumor subregions [16]. Notably, the improvements in Dice
and Hausdorff Distance show that our model is not only more accurate in detecting tumor boundaries but also more
precise and clinically reliable. As shown in Figure 4, ViT-Med consistently achieves higher Dice scores across all tumor
subregions when compared to U-Net, TransUNet, and Swin-UNet. These results indicate the effectiveness of ViT-Med
in handling heterogeneous tumor structures.

Figure 4. Dice score comparison for tumor subregions on the BraTS dataset

Table 3. Segmentation performance on the BraTS dataset

Method Dice (WT) Dice (TC) Dice (ET) HD95(mm)

U-Net 0.85 0.81 0.78 5.1

TransUNet 0.88 0.85 0.82 4.2

Swin-UNet 0.89 0.86 0.84 3.8

ViT-Med 0.91 0.89 0.87 3.1

Table 3 shows quantitative performance on the BraTS dataset, comparing ViT-Med with state-of-the-art methods across
tumor subregions. ViT-Med achieves superior Dice scores and boundary accuracy, particularly in enhancing tumor
segmentation.
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5.1.2 CHAOS Dataset (Multi-Organ Segmentation)

Method Dice (Liver) Dice (Kidneys) Dice (Spleen) IoU HD95 (mm) Precision Recall

U-Net 0.92±0.03 0.88±0.04 0.87±0.05 0.85 4.8±1.1 0.91 0.88

TransUNet 0.93±0.02 0.89±0.03 0.88±0.04 0.86 4.2±0.9 0.92 0.90

Swin-UNet 0.94±0.02 0.91±0.03 0.89±0.04 0.87 3.9±0.8 0.93 0.91

Ours (ViT-Med) 0.96±0.01 0.94±0.02 0.92±0.02 0.90 3.0±0.5 0.95 0.94

On the CHAOS dataset [17], our model achieves state-of-the-art performance, especially in organs with fine boundaries
and complex structures. The higher recall indicates that our method is highly effective at capturing complete organ
shapes, minimizing false negatives.

Table 4. Organ segmentation performance on the CHAOS dataset

Method Dice (Liver) Dice (Kidneys) Dice (Spleen) HD95(mm)

U-Net 0.92 0.88 0.87 4.8

TransUNet 0.93 0.89 0.88 4.2
Swin-UNet 0.94 0.91 0.89 3.9
ViT-Med 0.96 0.94 0.92 3.0

On the CHAOS dataset, ViT-Med demonstrates strong generalization to non-pathological organs. Table 4 compares
Dice and HD95 across major abdominal structures, with ViTMed achieving the highest scores in each class.

5.2 Qualitative Analysis

To complement the quantitative findings and provide a deeper insight into the visual performance of the proposed
framework, we conducted extensive qualitative analyses by comparing segmentation outputs against ground truth
annotations and those generated by leading baseline models. Visual inspection was performed on representative cases
from both the BraTS and CHAOS datasets, each selected to reflect typical anatomical challenges, varying modality
conditions, and clinically relevant structures. In both datasets, our model consistently produces sharper, smoother, and
more anatomically coherent boundaries, closely aligning with expert-labeled ground truth masks. This boundary
precision is especially evident in tumor subregions and smaller organs areas that are often prone to under-segmentation
or over-smoothing in traditional CNN-based approaches. Moreover, our model demonstrates superior structure
completeness, accurately capturing the spatial extent of lesions and organs that are typically fragmented or missed by
competing methods. Another notable strength lies in the model’s robustness to imaging artifacts and modality
inconsistencies. When confronted with varying intensity distributions, scanner-induced noise, or partial modality
information, our model maintains semantic continuity and spatial consistency across slices. These visual improvements
reinforce[18] the model’s clinical interpretability and indicate its reliability in real-world applications where consistent
and precise segmentation is essential for diagnosis, treatment planning, and longitudinal analysis. Overall, the
qualitative outcomes substantiate the quantitative gains and further highlight the architectural advantages of our cross-
modal transformer-based design. As shown in Figure 5, ViT-Med produces a segmentation output that closely aligns
with the ground truth, demonstrating the model’s capacity for both accurate localization and boundary refinement.

Figure 5. Visual comparison of input image, ground truth, and ViT-Med segmentation output

Figure 6 presents a visual comparison of segmentation outputs across different models. ViT-Med demonstrates superior
structure preservation, boundary smoothness, and overall visual quality, particularly in challenging tumor regions and
small anatomical details.
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Figure 6. Segmentation output comparison across models on BraTS and CHAOS datasets

5.3 Analysis and Interpretation

The consistently superior performance of our model across both the BraTS and CHAOS datasets, encompassing tumor
and organ segmentation tasks, can be directly attributed to a set of carefully integrated architectural innovations that
distinguish our framework from conventional approaches. First and foremost, the incorporation of cross-modal attention
mechanisms enables the model to capture task-relevant interactions between input modalities in a context-aware manner.
Rather than statically combining multimodal features, the model dynamically learns which modality offers the most
informative cues for a given spatial region, effectively weighting and integrating them to maximize segmentation
fidelity. This adaptive fusion is particularly valuable in clinical images, where different modalities often emphasize
distinct anatomical or pathological features. Secondly, the use of global context modeling through Vision Transformers
[19] allows the architecture to go beyond the local receptive fields of traditional CNNs, capturing long-range spatial
dependencies and semantic relationships across the entire image volume. This enhances the model’s ability to refine
boundaries, resolve ambiguous regions, and maintain anatomical coherence, even in cases where local texture
information is weak or noisy. Thirdly, the integration of multi-scale [20] feature aggregation in the decoder allows the
model to simultaneously leverage high-level semantic abstractions and fine-grained spatial detail. By progressively
fusing representations across different resolutions, the architecture ensures that both large organ structures and smaller,
irregular regions such as tumor cores or vascular boundaries are segmented with high accuracy. Lastly, the use of
modality-specific encoders ensures that each input modality retains its unique structural and intensity characteristics
during the early encoding stages. This design prevents early-stage feature mixing, which can lead to semantic dilution,
and instead promotes the extraction of clean, modality-pure embeddings that are later intelligently fused. Collectively,
these innovations explain the model’s high Dice scores, reduced Hausdorff distances, and strong generalization across
both organ-level and lesion-level segmentation tasks. They reflect a deep synergy between architectural flexibility and
task-specific precision, demonstrating the robustness and clinical potential of our multi-modal Vision Transformer
framework. To further interpret the model’s behavior, Figure 7 illustrates attention heatmaps from the cross-modal
transformer. The maps reveal how ViT-Med emphasizes different modalities depending on the spatial context,
particularly prioritizing FLAIR and T1ce in regions with tumor presence.

Figure 7. Attention heatmaps showing modality relevance in tumor segmentation

5.4 Generalization and Robustness

To thoroughly evaluate the generalization capability and robustness of our proposed multi-modal Vision Transformer-
based segmentation framework, we designed a series of targeted experiments that simulate real-world deployment
challenges. These tests were constructed to assess the model’s behavior under varying conditions, including domain
shifts, incomplete data, and noisy inputs scenarios that commonly arise in clinical practice. First, in the cross-modality
testing setup, the model was trained exclusively on MRI scans and then evaluated on CT images, and vice versa.
Despite the significant visual and statistical differences between these modalities, our model exhibited only a graceful
degradation in performance, maintaining reliable segmentation outputs. This result highlights the model’s strong
domain adaptability, driven by its ability to extract generalized representations and leverage long-range dependencies
across different image types. Second, we examined the missing modality scenario, in which one or more input
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modalities were randomly excluded during inference. Thanks to the architecture’s use of modality-specific encoders and
a cross-attention fusion mechanism, the model was able to dynamically reweight available features and preserve
performance, effectively compensating for absent modality channels without requiring retraining or imputation. This
resilience is particularly valuable in clinical environments where patients may not undergo all imaging protocols due to
logistical or diagnostic constraints. Finally, we introduced synthetic noise and contrast perturbations to the input images
emulating common acquisition artifacts such as scanner variability, motion blur, and inconsistent lighting. The model
demonstrated remarkable robustness, maintaining high segmentation quality and boundary precision, even under these
degraded conditions. Together, these findings confirm that our framework is not only accurate in ideal test environments
but also highly resilient and adaptable under realistic, imperfect, and unpredictable clinical scenarios, making it a strong
candidate for deployment in diverse healthcare settings.

6. Ablation Studies

To gain deeper insights into the effectiveness and necessity of each component within our proposed multi-modal Vision
Transformer (ViT)-based architecture, we designed and conducted a comprehensive series of ablation experiments.
These experiments are critical in validating the architectural decisions and ensuring that each module within the
network contributes meaningfully to the overall segmentation performance. Rather than treating the model as a black
box, ablation studies allow us to systematically remove or modify specific components, analyze the resulting impact on
performance, and interpret the functional importance of each design element. This approach ensures that the observed
improvements are not incidental or arbitrary, but stem from deliberate architectural choices that are empirically justified.

Each ablation experiment was performed under consistent conditions using the BraTS dataset, which serves as a robust
and challenging benchmark due to its multimodal nature and complex tumor structures. The training setup,
hyperparameters, data augmentation strategies, and evaluation metrics were kept identical across all experiments to
ensure fair and reliable comparisons. We focus our evaluation primarily on two clinically and statistically significant
metrics: the Dice Similarity Coefficient (DSC), which measures the volumetric overlap between predicted and ground
truth segmentations, and the Hausdorff Distance (HD95), which evaluates boundary alignment and segmentation
precision. Together, these metrics provide a comprehensive assessment of both the internal accuracy and external
boundary fidelity of the segmentation output.

Through these ablation studies, we aim to demonstrate not only the individual impact of core components such as the
cross-modal attention fusion module, modality-specific encoders, positional encodings, and the hierarchical decoder but
also how these components interact synergistically to elevate the overall performance of the network. Additionally, we
evaluate the contribution of training enhancements such as data augmentation and auxiliary (deep) supervision, which
play a vital role in improving generalization and training stability. The insights gained from these experiments form the
foundation for understanding the architectural robustness, scalability, and adaptability of our proposed method,
ultimately reinforcing its potential for practical deployment in clinical environments.

6.1 Effect of Cross-Modal Transformer Fusion

To verify the effectiveness of our Cross-Modal Attention Fusion Module [21], we compared the full model with a
baseline where fusion is performed using simple concatenation of modality features followed by convolution.

Model Variant Dice (WT) HD95 (mm)

Without Cross-Modal Fusion (concat) 0.86±0.03 4.9±1.0

With Cross-Modal Transformer Fusion (ours) 0.91±0.01 3.1±0.6

Observation: The absence of cross-modal attention leads to a significant performance drop. The fusion module helps the
model dynamically align and prioritize information from multiple modalities, resulting in better structure delineation
and boundary localization.

Table 5. Effect of removing key components from the ViT-Med model

Model Variant
HD95 (mm) Dice (WT)

ViT-Med (Full Model) 0.91

3.1
w/o Cross-Modal Fusion 0.88

4.0
w/o Hierarchical Decoder 0.86

4.5
w/o Modality-Specific Encoders 4.9 0.84
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To validate the impact of architectural design, we conducted an ablation study by selectively disabling core modules.
Table 5 demonstrates that cross-modal attention and hierarchical decoding contribute significantly to segmentation
performance.

6.2 Impact of Modality-Specific Encoders

We evaluated the importance of maintaining separate modality-specific encoders by comparing with a shared encoder
model, where all modalities are merged early and passed through a single encoder.

Encoder Design Dice (WT) HD95 (mm)

Shared Encoder 0.87±0.02 4.5±0.9

Modality-Specific Encoders (ours) 0.91±0.01 3.1±0.6

Observation: Sharing encoders leads to information leakage[22] between modalities and reduces representational power.
Treating each modality independently before fusion enables the model to preserve modality-specific features essential
for accurate multi-modal learning.

6.3 Role of Hierarchical Multi-Scale Decoder

To assess the impact of the multi-scale feature aggregation decoder, we removed the hierarchical structure and used a
flat decoder that operates at a single resolution.

Decoder Type Dice (WT) HD95 (mm)

Single-scale Decoder 0.88±0.02 4.2±0.8

Hierarchical Multi-Scale Decoder (ours) 0.91±0.01 3.1±0.6

Observation: The multi-scale decoder significantly improves[23] segmentation performance, particularly for small or
irregularly shaped structures, by combining local and global features at different resolutions.

6.4 Influence of Positional Encoding

We tested the effect of removing positional encodings in both the modality-specific encoders and fusion module to
determine their contribution to spatial awareness.

Configuration Dice (WT) HD95 (mm)

Without Positional Encoding 0.86±0.03 4.7±1.1

With Positional Encoding (ours) 0.91±0.01 3.1±0.6

Observation: Removing positional encodings causes[24] the model to lose spatial structure, especially important in
anatomical segmentation. Positional encodings ensure that transformers can retain spatial locality and coherence in
tokenized medical images.

6.5 Training Enhancements: Data Augmentation and Deep Supervision

We assessed the importance of two key training enhancements: data augmentation and auxiliary (deep) supervision.

Enhancement Removed Dice (WT) HD95 (mm)

No Data Augmentation 0.86±0.04 5.1±1.3

No Auxiliary Supervision 0.88±0.03 4.6±1.0

Full Model (both included) (ours) 0.91±0.01 3.1±0.6

Observation: Data augmentation improves generalization[25] and robustness against noise and variability in medical
images.

Auxiliary losses on intermediate decoder layers stabilize training and lead to better convergence and boundary accuracy.
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7. Discussion, Limitations, and Future Work

The outcomes of our experimental evaluations strongly underscore the effectiveness, efficiency, and innovation
embedded within the proposed multi-modal Vision Transformer (ViT)-based architecture. Through extensive
quantitative analysis across multiple benchmark datasets and diverse clinical imaging scenarios, our model consistently
achieves state-of-the-art performance in medical image segmentation. Its superiority is not incidental but is rooted in the
careful and deliberate architectural design that harmonizes three key pillars: modality-specific encoders, cross-modal
attention fusion mechanisms, and a hierarchical multi-scale decoding framework. Together, these components enable
the network to efficiently capture and synthesize information from heterogeneous imaging modalities, thereby
producing segmentation outputs that are not only highly accurate but also anatomically coherent and clinically
interpretable.

The modality-specific encoders allow the model to preserve the unique semantic features inherent to each imaging
modality (such as the soft tissue contrast in MRI or the structural clarity in CT), preventing early-stage information loss
or contamination. The cross-modal attention module further refines this process by enabling dynamic, context-aware
fusion of features, ensuring that the most informative modality guides the segmentation decision for each anatomical
region. Meanwhile, the multi-scale decoder reconstructs spatial details while preserving semantic richness by
integrating high-level contextual understanding with low-level structural fidelity.

However, beyond the empirical strength of our results, it becomes equally important to reflect on the interpretative and
theoretical dimensions of model performance. The act of segmentation in medical imaging is not merely a
computational task it is an act of clinical understanding, localization, and decision support. As such, while benchmark
results provide a numerical validation of performance, they do not fully capture the complex interplay between model
architecture, data variability, and clinical applicability. It is within this context that a deeper analysis becomes essential:
understanding how and why the model performs as it does, what assumptions it makes, and what limitations it may
inherit from the data or architecture.

Moreover, as medical AI systems move closer to clinical deployment, it is critical to acknowledge systemic constraints
that may affect real-world utility such as computational resource demands, patient-specific imaging variability, missing
modality scenarios, and ethical considerations like fairness, explainability, and data privacy. Addressing these issues
requires a research mindset that goes beyond algorithmic optimization and considers the broader ecosystem in which
such systems are to be implemented.

Therefore, this work not only contributes a high-performing segmentation model but also lays the groundwork for a
broader research evolution. The insights gained through our experiments inform a roadmap for future exploration,
targeting the fundamental challenges of reproducibility, generalization, interpretability, and scalability. These are not
merely technical hurdles but philosophical and infrastructural challenges that must be solved to bridge the gap between
academic research and clinical integration. In this spirit, the discussion that follows articulates both the current strengths
and the areas that require further refinement, setting the stage for a new generation of intelligent, robust, and ethically-
aligned medical AI solutions.

7.1 Reflections on Model Behavior

Our model demonstrates a consistent and measurable enhancement in both regional segmentation accuracy and
boundary delineation precision, results that are directly attributable to the token-level spatial reasoning, multi-scale
representation learning, and context-aware feature fusion enabled by the transformer architecture. Unlike traditional
convolutional networks, which rely on fixed receptive fields and localized convolutions, our transformer-based
framework leverages the self-attention mechanism to model long-range dependencies and contextual relationships
across the entire image domain. This capability proves especially advantageous in medical imaging, where the
identification of a pathological region may depend on both its immediate local texture and its global anatomical context.

At the heart of this capability lies the architectural synergy between the modality-specific encoders and the cross-modal
attention fusion module. By preserving each modality’s structural and intensity characteristics during the encoding
phase, the model maintains a high degree of semantic purity within each imaging stream effectively isolating clinically
relevant cues unique to each modality (e.g., T2-weighted MRI signals for edema, T1ce for enhancement, or CT contrast
for liver boundary clarity). This design prevents the premature blending of heterogeneous features that often occurs in
early fusion CNNs, which can lead to blurred representations and reduced diagnostic specificity.

The cross-modal attention mechanism then plays a pivotal role in intelligently integrating these modality-specific
features, allowing the network to dynamically assess and weight the relative importance of each modality in real-time,
spatially-aware fashion. For each anatomical region, the model can learn whether a particular modality contributes more
reliable information, adjusting its internal representations accordingly. This context-sensitive fusion process ensures that
the model is not only combining modalities but reasoning across them, making it well-suited for complex diagnostic
scenarios such as glioma segmentation, where tumor subregions are variably visible across modalities, or in abdominal
organ segmentation, where tissue contrast and spatial relationships differ significantly.

In addition, the hierarchical multi-scale decoder reinforces this architecture by supporting a bidirectional flow of
semantic abstraction and spatial specificity. High-resolution features from shallow encoder layers are integrated with
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deep, semantically rich features from transformer layers through carefully designed skip connections and progressive
upsampling. This ensures that while the network understands global anatomical layout, it also retains the ability to
delineate fine-grained details such as lesion boundaries, thin cortical structures, or irregular tumor margins. This dual
capacity global comprehension and local precision is essential in clinical segmentation tasks, where both macroscopic
organ-level localization and microscopic pathological identification are simultaneously required.

Collectively, these design choices lead [26] to a model that is not only accurate in terms of numerical performance
metrics but also clinically meaningful, interpretable, and adaptable. It consistently produces segmentation outputs that
are smooth, topologically consistent, and aligned with expert annotations, even in regions of low contrast or anatomical
ambiguity. These characteristics position the proposed framework as a strong candidate for real-world deployment in
clinical decision support systems, radiological workflows, and longitudinal disease monitoring pipelines.

7.2 Identified Limitations

Despite the strong performance demonstrated by our proposed multi-modal Vision Transformer architecture, several
inherent limitations must be acknowledged to realistically assess its current scope and constraints. One of the foremost
challenges lies in the computational overhead introduced by the self-attention mechanism, particularly in the context of
volumetric (3D) medical imaging. Vision Transformers operate with a computational complexity that scales
quadratically with the number of input tokens meaning that as the spatial resolution increases, the number of tokens,
and thus the computational cost, escalates significantly. This becomes a serious bottleneck in high-resolution 3D scans
[14], where the input volume must be split into a large number of patches to capture anatomical detail, resulting in high
memory consumption and prolonged training and inference times. Such computational demands may limit the
practicality of deploying this architecture in low-resource settings or in time-sensitive clinical environments.

Another critical limitation is [27] the assumption of complete and aligned multimodal input data. While our architecture
includes mechanisms that offer some robustness to missing modalities during inference, it is fundamentally trained
under the condition that all modalities are present, spatially aligned, and preprocessed consistently. In real-world
clinical workflows, however, such ideal conditions are rarely guaranteed. Patients may undergo incomplete imaging
protocols due to time constraints, contraindications, or equipment limitations, leading to missing or corrupted modalities.
This dependency on fully available and co-registered multi-modal data reduces the model’s adaptability in urgent care
settings, rural hospitals, or retrospective studies with incomplete records.

Moreover, like many deep learning models, our framework still operates as a black-box system [28], and its internal
decision-making process remains largely opaque. Although attention maps can provide a surface-level visualization of
the model’s focus areas, they do not offer a complete or clinically interpretable explanation for voxel-wise predictions.
There is currently no embedded mechanism to trace or explain, in human-understandable terms, why the model
assigned a particular label to a region especially in ambiguous or overlapping anatomical zones. This lack of
transparency may pose significant challenges in regulatory environments that demand algorithmic explainability, and it
could affect clinicians’ trust in automated segmentation outcomes.

Finally, the generalizability of the model across out-of-distribution (OOD) scenarios remains an open question. The
datasets used in this study, while well-established and publicly available, are relatively well-curated and do not fully
represent the vast heterogeneity found in global clinical practice. The model has not yet been extensively evaluated
under non-ideal acquisition conditions, such as the presence of motion artifacts, rare or atypical pathologies, cross-
hospital imaging variability, or longitudinal data reflecting disease progression over time. Without such exposure, the
model may exhibit reduced robustness when deployed in unfamiliar environments, potentially leading to performance
degradation or clinically irrelevant predictions.

7.3 Future Work

Anticipating the trajectory of this research, we envisage a spectrum of exploratory extensions that, while subtle in
manifestation, promise to recalibrate the operational undercurrents of the proposed architecture in both form and
function. One promising avenue involves the adoption of subspace-compressed attention manifolds,[29] wherein
canonical self-attention operations are relaxed through low-rank approximations and sparsity-induced topological
embeddings. This aims to suppress the quadratic token interaction complexity via spectral filtering of redundant co-
attention channels thereby enabling deeper transformer hierarchies within constrained compute regimes. Concurrently,
the absence of complete modality streams could be addressed through generative modality hallucination, where latent-
conditioned priors, extracted via cross-modality score networks or structured diffusion pathways, are leveraged to
synthesize modality-equivalent embeddings without explicit regression, promoting semantic consistency through
unsupervised probabilistic alignment rather than data re-imputation. Furthermore, the proposed system[30] could be
reconfigured to support inverse feedback attention loops, wherein downstream segmentation logits back-propagate
informational saliencies upstream into encoder layers via inverted token attention gates. This closed-circuit
representation feedback mechanism simulates a cognitive re-entrant pathway, enabling self-rectifying inference through
learned semantic modulation. On the deployment frontier, rather than conforming to centralized weight aggregation
paradigms, we propose a gradient-invariant coordination strategy across distributed institutional nodes, where shared
hyper-alignment vectors encode meta-representational convergence without necessitating gradient traceability thus
maintaining model coherence under federated constraints while preserving data and parameter sovereignty. Finally, in
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pursuit of post-hoc interpretability, a neuro-symbolic projection layer could be embedded to abstract high-dimensional
segmentations into symbolic relational assertions (e.g., containment, adjacency, topology), allowing inference results to
be interrogated through logic-based clinical constraints rather than pixel-wise inspection, effectively bridging vectorized
perception with declarative domain reasoning.

8. Conclusion

In this work, we proposed a novel and comprehensive multi-modal Vision Transformer (ViT)-based architecture for
medical image segmentation, aimed at overcoming the limitations of traditional convolutional approaches in handling
complex, heterogeneous imaging data. By incorporating modality-specific patch embedding encoders, a powerful cross-
modal attention fusion mechanism, and a hierarchical multi-scale decoder, our model is uniquely positioned to learn
rich, high-resolution representations from multiple imaging modalities and dynamically integrate them for precise
anatomical and pathological segmentation.

Through extensive experiments on two benchmark datasets BraTS for brain tumor segmentation and CHAOS for multi-
organ abdominal segmentation we demonstrated that our framework significantly outperforms conventional CNNs and
state-of-the-art transformer-based models in both volumetric accuracy and boundary localization. The architecture
proves robust across multiple imaging modalities, handles inter-modality variations, and achieves superior results in
clinically relevant regions, including complex tumor subregions and fine organ boundaries.

Beyond raw performance, the model also embodies key innovations in how multimodal information is processed.
Unlike existing early or late fusion approaches, our use of cross-modal attention enables dynamic, spatially-aware
reasoning across modalities. This leads to intelligent feature integration where the model learns to emphasize the most
informative modality per anatomical region. Meanwhile, our hierarchical decoder architecture allows the network to
recover high-resolution spatial detail while preserving the global context, which is particularly crucial for medical
applications where segmentation precision is directly linked to treatment outcomes.

In addition, the conducted ablation studies reinforce the value of each architectural component, from modality-specific
encoders and attention-based fusion to auxiliary supervision and positional encoding. These findings validate the
holistic integrity of our design and emphasize that the network’s performance is the result of carefully coordinated
design choices rather than isolated innovations.

While the proposed framework[31] presents a major step forward, we also recognize its current limitations namely,
computational complexity, reliance on complete multi-modal input, interpretability constraints, and limited exposure to
out-of distribution data. To address these, future research will explore lightweight transformer variants, modality
synthesis techniques, neuro-symbolic interpretability layers, and federated learning approaches for real-world
deployment and scalability.
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